標題: 基礎知識-三極管的工作原理詳解 [打印本頁]
作者: dfalfja 時間: 2018-9-6 21:25
標題: 基礎知識-三極管的工作原理詳解
結構與操作原理
三極管的基本結構是兩個反向連結的pn接面,如圖1所示,可有pnp和npn
兩種組合。三個接出來的端點依序稱為射極(emitter, E)、基極(base, B)和集
極(collector, C),名稱來源和它們在三極管操作時的功能有關。圖中也顯示出
npn與pnp三極管的電路符號,射極特別被標出,箭號所指的極為n型半導體,
和二極體的符號一致。在沒接外加偏壓時,兩個pn接面都會形成耗盡區,將中
性的p型區和n型區隔開。
圖1 pnp(a)與npn(b)三極管的結構示意圖與電路符號。
三極管的電特性和兩個pn接面的偏壓有關,工作區間也依偏壓方式來分類,這里
我們先討論最常用的所謂”正向活性區”(forward active),在此區EB極間的pn接
面維持在正向偏壓,而BC極間的pn接面則在反向偏壓,通常用作放大器的三極管
都以此方式偏壓。圖2(a)為一pnp三極管在此偏壓區的示意圖。 EB接面的空乏
區由于在正向偏壓會變窄,載體看到的位障變小,射極的電洞會注入到基極,基
極的電子也會注入到射極;而BC接面的耗盡區則會變寬,載體看到的位障變大,
故本身是不導通的。圖2(b)畫的是沒外加偏壓,和偏壓在正向活性區兩種情形
下,電洞和電子的電位能的分布圖。
三極管和兩個反向相接的pn二極管有什么差別呢?其間最大的不同部分就在
于三極管的兩個接面相當接近。以上述之偏壓在正向活性區之pnp三極管為例,
射極的電洞注入基極的n型中性區,馬上被多數載體電子包圍遮蔽,然后朝集電極
方向擴散,同時也被電子復合。當沒有被復合的電洞到達BC接面的耗盡區時,
會被此區內的電場加速掃入集電極,電洞在集電極中為多數載體,很快藉由漂移電流
到達連結外部的歐姆接點,形成集電極電流IC。 IC的大小和BC間反向偏壓的大小
關系不大。基極外部僅需提供與注入電洞復合部分的電子流IBrec,與由基極注入
射極的電子流InB? E(這部分是三極管作用不需要的部分)。 InB? E在射極與與電
洞復合,即InB? E=IErec。pnp三極管在正向活性區時主要的電流種類可以清楚地
在圖3(a)中看出。
圖2 (a)一pnp三極管偏壓在正向活性區;(b)沒外加偏壓,和偏壓在正向
活性區兩種情形下,電洞和電子的電位能的分布圖比較。

圖3 (a) pnp三極管在正向活性區時主要的電流種類;(b)電洞電位能分布及
注入的情形;(c)電子的電位能分布及注入的情形。
一般三極管設計時,射極的摻雜濃度較基極的高許多,如此由射極注入基極
的射極主要載體電洞(也就是基極的少數載體)IpE? B電流會比由基極注入射極
的載體電子電流InB? E大很多,三極管的效益比較高。圖3(b)和(c)個別畫出電洞
和電子的電位能分布及載體注入的情形。同時如果基極中性區的寬度WB愈窄,
電洞通過基極的時間愈短,被多數載體電子復合的機率愈低,到達集電極的有效電
洞流IpE? C愈大,基極必須提供的復合電子流也降低,三極管的效益也就愈高。
集電極的摻雜通常最低,如此可增大CB極的崩潰電壓,并減小BC間反向偏壓的
pn接面的反向飽和電流,這里我們忽略這個反向飽和電流。
由圖4(a),我們可以把各種電流的關系寫下來:
射極電流IE=IpE? B+ IErec = IpE? B+ InB? E =IpE? C+ IBrec + InB? E (1a)
基極電流IB= InB? E + IBrec= IErec + IBrec (1b)
集電極電流IC =IpE? C= IE - IErec - IBrec= IE - IB (1c)
式1c也可以寫成
IE = IC + IB
射極注入基極的電洞流大小是由EB接面間的正向偏壓大小來控制,和二極
體的情形類似,在啟動電壓附近,微小的偏壓變化,即可造成很大的注入電流變
化。更精確的說,三極管是利用VEB(或VBE)的變化來控制IC,而且提供之IB遠
比IC小。npn三極管的操作原理和pnp三極管是一樣的,只是偏壓方向,電流方
向均相反,電子和電洞的角色互易。pnp三極管是利用VEB控制由射極經基極、
入射到集電極的電洞,而npn三極管則是利用VBE控制由射極經基極、入射到集電極
的電子,圖4是二者的比較。
經過上面討論可以看出,三極管的效益可以由在正向活性區時,射極電流中
有多少比例可以到達集電極看出,這個比例習慣性定義作希臘字母α
圖4 pnp三極管與npn三極管在正向活性區的比較。
而且a一定小于1。效益高的三極管,a可以比0.99大,也就是只有小于1%的射極
電流在基極與射極內與基極的主要載體復合,超過99%的射極電流到達集電極!
了解正向活性區的工作原理后,三極管在其他偏壓方式的工作情形就很容易理
解了。表1列出三極管四種工作方式的名稱及對應之BE和BC之pn接面偏壓方
式。反向活性區(reverse active)是將原來之集電極用作射極,原來的射極當作集電極,
但由于原來集電極之摻雜濃度較基極低,正向偏壓時由原基極注入到原集電極之載體
遠較原集電極注入基極的多,效益很差,也就是說和正向活性區相比,提供相同的
基極電流,能夠開關控制的集電極電流較少,a較小。在飽和區(saturation),兩個
接面都是正向偏壓,射極和集電極同時將載體注入基極,基極因此堆積很多少數載
體,基極復合電流大增,而且射極和集電極的電流抵銷,被控制的電流量減小。在
截止區(cut off),BE和BC接面均不導通,各極間只有很小的反向飽和電流,三
極間可視作開路,也就是開關在關的狀態。
名稱 | 正向活性區 | 反向活性區 | 飽和區 | 截止區 |
(forward active) | (reverse active) | (saturation) | (cut off ) |
BE 接面 | 正向偏壓 | 反向偏壓 | 正向偏壓 | 反向偏壓 |
BC 接面 | 反向偏壓 | 正向偏壓 | 正向偏壓 | 反向偏壓 |
用途 | 線性信號放大器
數字電路
開關電路 | 很少使用 | 數字電路 開關電路 | 數字電路 開關電路 |
工作模式 | 射極結面 | 極集結面 |
飽和 | 正向偏壓 | 正向偏壓 |
線性 | 正向偏壓 | 反向偏壓 |
反向 | 反向偏壓 | 正向偏壓 |
截止 | 反向偏壓 | 反向偏壓 |
表中同時列出了四種工作方式的主要用途。 三極管在數字電路中的用途其實
就是開關,利用電信號使三極管在正向活性區(或飽和區)與截止區間切換,就
開關而言,對應開與關的狀態,就數字電路而言則代表0與1(或1與0)兩個
二進位數字。若三極管一直維持偏壓在正向活性區,在射極與基極間微小的電信
號(可以是電壓或電流)變化,會造成射極與集電極間電流相對上很大的變化,故
可用作信號放大器。下面在介紹完三極管的電流電壓特性后,會再仔細討論三極管
的用途。
三極管截止與飽合狀態
截止狀態
三極管作為開關使用時,仍是處于下列兩種狀態下工作。
1.截止(cut off)狀態:如圖5所示,當三極管之基極不加偏壓或
加上反向偏壓使BE極截止時(BE極之特性和二極管相同,須加
上大于0.7V之正向偏壓時才態導通),基極電流IB=0,因為IC=β
IB,所以IC=IE=0,此時CE極之間相當于斷路,負載無電流。
|
a)基極(B)不加偏壓使
基極電流IB等于零 | (b)基極(B)加上反向偏
壓使基極電流IB等于零 | (c)此時集極(C)與射極(E)
之間形同段路,負載無
電流通過 |
飽合(saturation)狀態:如圖6所示,當三極管之基極加入駛
大的電流時,因為IC≒IE=β×IB,射極和集極的電流亦非常大,此
時,集極與射極之間的電壓降非常低(VCE為0.4V以下),其意義相
當于集極與射極之間完全導通,此一狀態稱為三極管飽合。
圖6 (a)基極加上足夠的順向 (b)此時C-E極之間視同
偏壓使IB足夠大 導通狀態
晶體管的電路符號和各三個電極的名稱如下
圖7 PNP型三極管 圖8 NPN型三極管
三極管的特性曲線
1、輸入特性
圖2 (b)是三極管的輸入特性曲線,它表示Ib隨Ube的變化關系,其特點是:1)當Uce在0-2伏范圍內,曲線位置和形狀與Uce有關,但當Uce高于2伏后,曲線Uce基本無關通常輸入特性由兩條曲線(Ⅰ和Ⅱ)表示即可。
2)當Ube<UbeR時,Ib≈O稱(0~UbeR)的區段為“死區”當Ube>UbeR時,Ib隨Ube增加而增加,放大時,三極管工作在較直線的區段。
3)三極管輸入電阻,定義為:
rbe=(△Ube/△Ib)Q點,其估算公式為:
rbe=rb+(β+1)(26毫伏/Ie毫伏)
rb為三極管的基區電阻,對低頻小功率管,rb約為300歐。
2、輸出特性
輸出特性表示Ic隨Uce的變化關系(以Ib為參數)從圖9(C)所示的輸出特性可見,它分為三個區域:截止區、放大區和飽和區。
截止區當Ube<0時,則Ib≈0,發射區沒有電子注入基區,但由于分子的熱運動,集電集仍有小量電流通過,即Ic=Iceo稱為穿透電流,常溫時Iceo約為幾微安,鍺管約為幾十微安至幾百微安,它與集電極反向電流Icbo的關系是:
Icbo=(1+β)Icbo
常溫時硅管的Icbo小于1微安,鍺管的Icbo約為10微安,對于鍺管,溫度每升高12℃,Icbo數值增加一倍,而對于硅管溫度每升高8℃, Icbo數值增大一倍,雖然硅管的Icbo隨溫度變化更劇烈,但由于鍺管的Icbo值本身比硅管大,所以鍺管仍然受溫度影響較嚴重的管,放大區,當晶體三極管發射結處于正偏而集電結于反偏工作時,Ic隨Ib近似作線性變化,放大區是三極管工作在放大狀態的區域。
飽和區當發射結和集電結均處于正偏狀態時,Ic基本上不隨Ib而變化,失去了放大功能。根據三極管發射結和集電結偏置情況,可能判別其工作狀態。
圖9
三極管的主要參數
1、直流參數
(1)集電極一基極反向飽和電流Icbo,發射極開路(Ie=0)時,基極和集電極之間加上規定的反向電壓Vcb時的集電極反向電流,它只與溫度有關,在一定溫度下是個常數,所以稱為集電極一基極的反向飽和電流。良好的三極管,Icbo很小,小功率鍺管的Icbo約為1~10微安,大功率鍺管的Icbo可達數毫安培,而硅管的Icbo則非常小,是毫微安級。
(2)集電極一發射極反向電流Iceo(穿透電流)基極開路(Ib=0)時,集電極和發射極之間加上規定反向電壓Vce時的集電極電流。 Iceo大約是Icbo的β倍即Iceo=(1+β)Icbo o Icbo和Iceo受溫度影響極大,它們是衡量管子熱穩定性的重要參數,其值越小,性能越穩定,小功率鍺管的Iceo比硅管大。
(3)發射極---基極反向電流Iebo集電極開路時,在發射極與基極之間加上規定的反向電壓時發射極的電流,它實際上是發射結的反向飽和電流。
(4)直流電流放大系數β1(或hEF)這是指共發射接法,沒有交流信號輸入時,集電極輸出的直流電流與基極輸入的直流電流的比值,即:
β1=Ic/Ib
2、交流參數
(1)交流電流放大系數β(或hfe)這是指共發射極接法,集電極輸出電流的變化量△Ic與基極輸入電流的變化量△Ib之比,即:
β= △Ic/△Ib
一般電晶體的β大約在10-200之間,如果β太小,電流放大作用差,如果β太大,電流放大作用雖然大,但性能往往不穩定。
(2)共基極交流放大系數α(或hfb)這是指共基接法時,集電極輸出電流的變化是△Ic與發射極電流的變化量△Ie之比,即:
α=△Ic/△Ie
因為△Ic<△Ie,故α<1。高頻三極管的α>0.90就可以使用
α與β之間的關系:
α= β/(1+β)
β= α/(1-α)≈1/(1-α)
(3)截止頻率fβ、fα當β下降到低頻時0.707倍的頻率,就什發射極的截止頻率fβ;當α下降到低頻時的0.707倍的頻率,就什基極的截止頻率fαo fβ、 fα是表明管子頻率特性的重要參數,它們之間的關系為:
fβ≈(1-α)fα
(4)特征頻率fT因為頻率f上升時,β就下降,當β下降到1時,對應的fT是全面地反映電晶體的高頻放大性能的重要參數。
3、極限參數
(1)集電極最大允許電流ICM當集電極電流Ic增加到某一數值,引起β值下降到額定值的2/3或1/2,這時的Ic值稱為ICM。所以當Ic超過ICM時,雖然不致使管子損壞,但β值顯著下降,影響放大品質。
(2)集電極----基極擊穿電壓BVCBO當發射極開路時,集電結的反向擊穿電壓稱為BVEBO。
(3)發射極-----基極反向擊穿電壓BVEBO當集電極開路時,發射結的反向擊穿電壓稱為BVEBO。
(4)集電極-----發射極擊穿電壓BVCEO當基極開路時,加在集電極和發射極之間的最大允許電壓,使用時如果Vce>BVceo,管子就會被擊穿。
(5)集電極最大允許耗散功率PCM集電流過Ic,溫度要升高,管子因受熱而引起參數的變化不超過允許值時的最大集電極耗散功率稱為PCM。管子實際的耗散功率于集電極直流電壓和電流的乘積,即Pc=Uce×Ic.使用時慶使Pc<PCM。
PCM與散熱條件有關,增加散熱片可提高PCM。
晶體三極管用途
晶體三極管的用途主要是交流信號放大,直流信號放大和電路開關。
晶體三極管偏置
使用晶體管作放大用途時,必須在它的各電極上加上適當極性的電壓,稱為“偏置電壓”簡稱“偏壓”, 又“偏置偏流”。電路組成上叫偏置電路。
晶體管各電極加上適當的偏置電壓之后,各電極上便有電流流動。 通過發射極的電流稱為“射極電流”,用IE表示;通過基極的電流稱為“基極電流”,用IB表示;通過集電極的電流稱為“集極電流”,用IC表示。
圖10
晶體管三個電極的電流有一定關系,公式如下
IE = IB +IC
晶體三極管的三種放大電路
當晶體管被用作放大器使用時,其中兩個電極用作信號 (待放大信號) 的輸入端子;兩個電極作為信號 (放大后的信號) 的輸出端子。 那么,晶體管三個電極中,必須有一個電極既是信號的輸入端子,又同時是信號的輸出端子,這個電極稱為輸入信號和輸出信號的公共電極。
按晶體管公共電極的不同選擇,晶體管放大電路有三種:共基極電路 ( Common base circuit)、共射極電路(Common emitter circuit) 和 共集極電路(Common collector circuit),如下圖示。
圖11
由于共射極電路放大電路的電流增益和電壓增益均較其它兩種放大電路為大,故多用作訊號放大使用。
晶體三極管的放大作用
晶體管是一個電流控制組件,其集極電流 IC可以由基極電流IB控制,只需輕微的改變基流IB就可以引起很大的集流變化IC。
由于晶體管基流IB的輕微變化可以控制較大的集流IC,我們利用這一特點,用它來放大微弱的電信號,稱為晶體管的放大作用 (Amplification),簡稱晶體管放大。
簡單來說,晶體管的放大原理是把微弱的電信號 (微弱的電壓信號 Vi) 加在基極上,使基極電流按電信號變化,通過晶體管的電流控制作用,就可以在負載上得到與原信號變化一樣,但增強了的電信號 (較大的電壓信號 Vo)。
圖12
共射極放大電路
單電源供電的共射極放大電路如下:
圖13
完整的Word格式文檔51黑下載地址:
【最新】三極管工作原理.doc
(272 KB, 下載次數: 18)
2018-9-6 21:25 上傳
點擊文件名下載附件
下載積分: 黑幣 -5
| 歡迎光臨 (http://m.raoushi.com/bbs/) |
Powered by Discuz! X3.1 |