欧美极品高清xxxxhd,国产日产欧美最新,无码AV国产东京热AV无码,国产精品人与动性XXX,国产传媒亚洲综合一区二区,四库影院永久国产精品,毛片免费免费高清视频,福利所导航夜趣136
標題:
msp430最小系統板串口測試程序源碼
[打印本頁]
作者:
weizhong993
時間:
2018-1-17 18:24
標題:
msp430最小系統板串口測試程序源碼
/********************************************************************
//DM430-L型最小系統板串口測試程序,使用單片機的串口0
//使用板載BSL模塊或者用戶外接串口線到DB9,要求是直連公對母串口線
//使用串口調試助手發送數據到系統板,比如02,03等
//系統板會將收到的數據再發送到串口調試助手,接收采用中斷模塊,發送用查詢
//板載的BSL模塊可以通過跳線帽設置為USB轉串口模式,筆記本電腦沒有串口可以直接代替
//開發板的BSL_Config區的RXD和TXD0連接,TXD和RXD0連接即可,另外2個跳線帽取下
//使用USB轉串口功能時,BSL失效,因此操作前應該先將程序下載至芯片中再調整跳線帽
********************************************************************/
#include <msp430x14x.h>
#include "Config.h"
//********************************
#define INT8U unsigned char
#define INT16U unsigned int
#define WRITE_BURST 0x40 //連續寫入
#define READ_SINGLE 0x80 //讀
#define READ_BURST 0xC0 //連續讀
#define BYTES_IN_RXFIFO 0x7F //接收緩沖區的有效字節數
#define CRC_OK 0x80 //CRC校驗通過位標志
//***************更多功率參數設置可詳細參考DATACC1100英文文檔中第48-49頁的參數表******************
//INT8U PaTabel[8] = {0x04 ,0x04 ,0x04 ,0x04 ,0x04 ,0x04 ,0x04 ,0x04}; //-30dBm 功率最小
//INT8U PaTabel[8] = {0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60}; //0dBm
INT8U PaTabel[8] = {0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0}; //10dBm 功率最大
//***********************************************************************************************
void SpiInit(void);
void CpuInit(void);
void RESET_CC1100(void);
void POWER_UP_RESET_CC1100(void);
void halSpiWriteReg(INT8U addr, INT8U value);
void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count);
void halSpiStrobe(INT8U strobe);
INT8U halSpiReadReg(INT8U addr);
void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count);
INT8U halSpiReadStatus(INT8U addr);
void halRfWriteRfSettings(void);
void halRfSendPacket(INT8U *txBuffer, INT8U size);
INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length);
//*****************************************************************************************
// CC1100 STROBE, CONTROL AND STATUS REGSITER
#define CCxxx0_IOCFG2 0x00 // GDO2 output pin configuration
#define CCxxx0_IOCFG1 0x01 // GDO1 output pin configuration
#define CCxxx0_IOCFG0 0x02 // GDO0 output pin configuration
#define CCxxx0_FIFOTHR 0x03 // RX FIFO and TX FIFO thresholds
#define CCxxx0_SYNC1 0x04 // Sync word, high INT8U
#define CCxxx0_SYNC0 0x05 // Sync word, low INT8U
#define CCxxx0_PKTLEN 0x06 // Packet length
#define CCxxx0_PKTCTRL1 0x07 // Packet automation control
#define CCxxx0_PKTCTRL0 0x08 // Packet automation control
#define CCxxx0_ADDR 0x09 // Device address
#define CCxxx0_CHANNR 0x0A // Channel number
#define CCxxx0_FSCTRL1 0x0B // Frequency synthesizer control
#define CCxxx0_FSCTRL0 0x0C // Frequency synthesizer control
#define CCxxx0_FREQ2 0x0D // Frequency control word, high INT8U
#define CCxxx0_FREQ1 0x0E // Frequency control word, middle INT8U
#define CCxxx0_FREQ0 0x0F // Frequency control word, low INT8U
#define CCxxx0_MDMCFG4 0x10 // Modem configuration
#define CCxxx0_MDMCFG3 0x11 // Modem configuration
#define CCxxx0_MDMCFG2 0x12 // Modem configuration
#define CCxxx0_MDMCFG1 0x13 // Modem configuration
#define CCxxx0_MDMCFG0 0x14 // Modem configuration
#define CCxxx0_DEVIATN 0x15 // Modem deviation setting
#define CCxxx0_MCSM2 0x16 // Main Radio Control State Machine configuration
#define CCxxx0_MCSM1 0x17 // Main Radio Control State Machine configuration
#define CCxxx0_MCSM0 0x18 // Main Radio Control State Machine configuration
#define CCxxx0_FOCCFG 0x19 // Frequency Offset Compensation configuration
#define CCxxx0_BSCFG 0x1A // Bit Synchronization configuration
#define CCxxx0_AGCCTRL2 0x1B // AGC control
#define CCxxx0_AGCCTRL1 0x1C // AGC control
#define CCxxx0_AGCCTRL0 0x1D // AGC control
#define CCxxx0_WOREVT1 0x1E // High INT8U Event 0 timeout
#define CCxxx0_WOREVT0 0x1F // Low INT8U Event 0 timeout
#define CCxxx0_WORCTRL 0x20 // Wake On Radio control
#define CCxxx0_FREND1 0x21 // Front end RX configuration
#define CCxxx0_FREND0 0x22 // Front end TX configuration
#define CCxxx0_FSCAL3 0x23 // Frequency synthesizer calibration
#define CCxxx0_FSCAL2 0x24 // Frequency synthesizer calibration
#define CCxxx0_FSCAL1 0x25 // Frequency synthesizer calibration
#define CCxxx0_FSCAL0 0x26 // Frequency synthesizer calibration
#define CCxxx0_RCCTRL1 0x27 // RC oscillator configuration
#define CCxxx0_RCCTRL0 0x28 // RC oscillator configuration
#define CCxxx0_FSTEST 0x29 // Frequency synthesizer calibration control
#define CCxxx0_PTEST 0x2A // Production test
#define CCxxx0_AGCTEST 0x2B // AGC test
#define CCxxx0_TEST2 0x2C // Various test settings
#define CCxxx0_TEST1 0x2D // Various test settings
#define CCxxx0_TEST0 0x2E // Various test settings
// Strobe commands
#define CCxxx0_SRES 0x30 // Reset chip.
#define CCxxx0_SFSTXON 0x31 // Enable and calibrate frequency synthesizer (if MCSM0.FS_AUTOCAL=1).
// If in RX/TX: Go to a wait state where only the synthesizer is
// running (for quick RX / TX turnaround).
#define CCxxx0_SXOFF 0x32 // Turn off crystal oscillator.
#define CCxxx0_SCAL 0x33 // Calibrate frequency synthesizer and turn it off
// (enables quick start).
#define CCxxx0_SRX 0x34 // Enable RX. Perform calibration first if coming from IDLE and
// MCSM0.FS_AUTOCAL=1.
#define CCxxx0_STX 0x35 // In IDLE state: Enable TX. Perform calibration first if
// MCSM0.FS_AUTOCAL=1. If in RX state and CCA is enabled:
// Only go to TX if channel is clear.
#define CCxxx0_SIDLE 0x36 // Exit RX / TX, turn off frequency synthesizer and exit
// Wake-On-Radio mode if applicable.
#define CCxxx0_SAFC 0x37 // Perform AFC adjustment of the frequency synthesizer
#define CCxxx0_SWOR 0x38 // Start automatic RX polling sequence (Wake-on-Radio)
#define CCxxx0_SPWD 0x39 // Enter power down mode when CSn goes high.
#define CCxxx0_SFRX 0x3A // Flush the RX FIFO buffer.
#define CCxxx0_SFTX 0x3B // Flush the TX FIFO buffer.
#define CCxxx0_SWORRST 0x3C // Reset real time clock.
#define CCxxx0_SNOP 0x3D // No operation. May be used to pad strobe commands to two
// INT8Us for simpler software.
#define CCxxx0_PARTNUM 0x30
#define CCxxx0_VERSION 0x31
#define CCxxx0_FREQEST 0x32
#define CCxxx0_LQI 0x33
#define CCxxx0_RSSI 0x34
#define CCxxx0_MARCSTATE 0x35
#define CCxxx0_WORTIME1 0x36
#define CCxxx0_WORTIME0 0x37
#define CCxxx0_PKTSTATUS 0x38
#define CCxxx0_VCO_VC_DAC 0x39
#define CCxxx0_TXBYTES 0x3A
#define CCxxx0_RXBYTES 0x3B
#define CCxxx0_PATABLE 0x3E
#define CCxxx0_TXFIFO 0x3F
#define CCxxx0_RXFIFO 0x3F
// RF_SETTINGS is a data structure which contains all relevant CCxxx0 registers
typedef struct S_RF_SETTINGS
{
INT8U FSCTRL2; //自已加的
INT8U FSCTRL1; // Frequency synthesizer control.
INT8U FSCTRL0; // Frequency synthesizer control.
INT8U FREQ2; // Frequency control word, high INT8U.
INT8U FREQ1; // Frequency control word, middle INT8U.
INT8U FREQ0; // Frequency control word, low INT8U.
INT8U MDMCFG4; // Modem configuration.
INT8U MDMCFG3; // Modem configuration.
INT8U MDMCFG2; // Modem configuration.
INT8U MDMCFG1; // Modem configuration.
INT8U MDMCFG0; // Modem configuration.
INT8U CHANNR; // Channel number.
INT8U DEVIATN; // Modem deviation setting (when FSK modulation is enabled).
INT8U FREND1; // Front end RX configuration.
INT8U FREND0; // Front end RX configuration.
INT8U MCSM0; // Main Radio Control State Machine configuration.
INT8U FOCCFG; // Frequency Offset Compensation Configuration.
INT8U BSCFG; // Bit synchronization Configuration.
INT8U AGCCTRL2; // AGC control.
INT8U AGCCTRL1; // AGC control.
INT8U AGCCTRL0; // AGC control.
INT8U FSCAL3; // Frequency synthesizer calibration.
INT8U FSCAL2; // Frequency synthesizer calibration.
INT8U FSCAL1; // Frequency synthesizer calibration.
INT8U FSCAL0; // Frequency synthesizer calibration.
INT8U FSTEST; // Frequency synthesizer calibration control
INT8U TEST2; // Various test settings.
INT8U TEST1; // Various test settings.
INT8U TEST0; // Various test settings.
INT8U IOCFG2; // GDO2 output pin configuration
INT8U IOCFG0; // GDO0 output pin configuration
INT8U PKTCTRL1; // Packet automation control.
INT8U PKTCTRL0; // Packet automation control.
INT8U ADDR; // Device address.
INT8U PKTLEN; // Packet length.
} RF_SETTINGS;
//-------------以下波特率為38.4K---------------------------//
//---------------------------------------------------------
const RF_SETTINGS rfSettings =
{
0x00,
0x08, // FSCTRL1 Frequency synthesizer control. for 38.4K
0x00, // FSCTRL0 Frequency synthesizer control.
0x10, // FREQ2 Frequency control word, high byte.
0xA7, // FREQ1 Frequency control word, middle byte.
0x62, // FREQ0 Frequency control word, low byte.
0xCA, // MDMCFG4 Modem configuration. for 38.4K
0x83, // MDMCFG3 Modem configuration. for 38.4K
0x03, // MDMCFG2 Modem configuration. for 38.4K
0x22, // MDMCFG1 Modem configuration.
0xF8, // MDMCFG0 Modem configuration.
0x00, // CHANNR Channel number.
0x34, // DEVIATN Modem deviation setting (when FSK modulation is enabled). for 38.4K
0x56, // FREND1 Front end RX configuration. for 38.4K
0x10, // FREND0 Front end RX configuration.
0x18, // MCSM0 Main Radio Control State Machine configuration.
0x16, // FOCCFG Frequency Offset Compensation Configuration. for 38.4K
0x6C, // BSCFG Bit synchronization Configuration. for 38.4K
0x43, // AGCCTRL2 AGC control. for 38.4K
0x40, // AGCCTRL1 AGC control. for 38.4K
0x91, // AGCCTRL0 AGC control. for 38.4K
0xE9, // FSCAL3 Frequency synthesizer calibration. for 38.4k
0x2A, // FSCAL2 Frequency synthesizer calibration. for 38.4K
0x00, // FSCAL1 Frequency synthesizer calibration. for 38.4K
0x1f, // FSCAL0 Frequency synthesizer calibration. for 38.4K
0x59, // FSTEST Frequency synthesizer calibration.
0x81, // TEST2 Various test settings.
0x35, // TEST1 Various test settings.
0x09, // TEST0 Various test settings.
0x0B, // IOCFG2 GDO2 output pin configuration.
0x06, // IOCFG0D GDO0 output pin configuration. Refer to SmartRF?Studio User Manual for detailed pseudo register explanation.
0x04, // PKTCTRL1 Packet automation control.
0x05, // PKTCTRL0 Packet automation control.
0x00, // ADDR Device address.
0x20 // PKTLEN Packet length. old is 0x0c ,0x20
};
//---------------------------------------
//*****************************************************************************************
//函數名:delay(unsigned int s)
//輸入:時間
//輸出:無
//功能描述:普通廷時,內部用
//*****************************************************************************************
static void delay(unsigned int s)
{
unsigned int i;
for(i=0; i<s; i++);
for(i=0; i<s; i++);
}
void halWait(INT16U timeout)
{
do {
_NOP();
_NOP();
_NOP();
_NOP();
_NOP();
_NOP();
_NOP();
_NOP();
_NOP();
_NOP();
_NOP();
_NOP();
_NOP();
_NOP();
_NOP();
} while (--timeout);
}
void SpiInit(void)
{
CC1100_CSN_0;
CC1100_SCK_0;
CC1100_CSN_1;
}
//*****************************************************************************************
//函數名:SpisendByte(INT8U dat)
//輸入:發送的數據
//輸出:無
//功能描述:SPI發送一個字節
//*****************************************************************************************
INT8U SpiTxRxByte(INT8U dat)
{
INT8U i,temp;
temp = 0;
CC1100_SCK_0;
for(i=0; i<8; i++)
{
if(dat & 0x80)
{
CC1100_MOSI_1;
}
else CC1100_MOSI_0;
dat <<= 1;
CC1100_SCK_1 ;
// _nop_();
temp <<= 1;
if(CC1100_MISO_0)temp++;
CC1100_SCK_0;
// _nop_();
}
return temp;
}
//*****************************************************************************************
//函數名:void POWER_UP_RESET_CC1100(void)
//輸入:無
//輸出:無
//功能描述:上電復位CC1100
//*****************************************************************************************
void POWER_UP_RESET_CC1100(void)
{
CC1100_CSN_1 ;
halWait(1);
CC1100_CSN_0;
halWait(1);
CC1100_CSN_1;
halWait(41);
RESET_CC1100(); //復位CC1100
}
//*****************************************************************************************
//函數名:void halSpiWriteReg(INT8U addr, INT8U value)
//輸入:地址和配置字
//輸出:無
//功能描述:SPI寫寄存器
//*****************************************************************************************
void halSpiWriteReg(INT8U addr, INT8U value)
{
CC1100_CSN_0 ;
while (CC1100_MISO_0);
SpiTxRxByte(addr); //寫地址
SpiTxRxByte(value); //寫入配置
CC1100_CSN_1;
}
//*****************************************************************************************
//函數名:void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count)
//輸入:地址,寫入緩沖區,寫入個數
//輸出:無
//功能描述:SPI連續寫配置寄存器
//*****************************************************************************************
void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count)
{
INT8U i, temp;
temp = addr | WRITE_BURST;
CC1100_CSN_0;
while (CC1100_MISO_0);
SpiTxRxByte(temp);
for (i = 0; i < count; i++)
{
SpiTxRxByte(buffer[i]);
}
CC1100_CSN_1 ;
}
//*****************************************************************************************
//函數名:void halSpiStrobe(INT8U strobe)
//輸入:命令
//輸出:無
//功能描述:SPI寫命令
//*****************************************************************************************
void halSpiStrobe(INT8U strobe)
{
CC1100_CSN_0 ;
while (CC1100_MISO_0);
SpiTxRxByte(strobe); //寫入命令
CC1100_CSN_1 ;
}
//*****************************************************************************************
//函數名:INT8U halSpiReadReg(INT8U addr)
//輸入:地址
//輸出:該寄存器的配置字
//功能描述:SPI讀寄存器
//*****************************************************************************************
INT8U halSpiReadReg(INT8U addr)
{
INT8U temp, value;
temp = addr|READ_SINGLE;//讀寄存器命令
CC1100_CSN_0;
while (CC1100_MISO_0);
SpiTxRxByte(temp);
value = SpiTxRxByte(0);
CC1100_CSN_1 ;
return value;
}
//*****************************************************************************************
//函數名:void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count)
//輸入:地址,讀出數據后暫存的緩沖區,讀出配置個數
//輸出:無
//功能描述:SPI連續寫配置寄存器
//*****************************************************************************************
void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count)
{
INT8U i,temp;
temp = addr | READ_BURST; //寫入要讀的配置寄存器地址和讀命令
CC1100_CSN_0 ;
while (CC1100_MISO_0);
SpiTxRxByte(temp);
for (i = 0; i < count; i++)
{
buffer[i] = SpiTxRxByte(0);
}
CC1100_CSN_1;
}
//*****************************************************************************************
//函數名:INT8U halSpiReadReg(INT8U addr)
//輸入:地址
//輸出:該狀態寄存器當前值
//功能描述:SPI讀狀態寄存器
//*****************************************************************************************
INT8U halSpiReadStatus(INT8U addr)
{
INT8U value,temp;
temp = addr | READ_BURST; //寫入要讀的狀態寄存器的地址同時寫入讀命令
CC1100_CSN_0 ;
while (CC1100_MISO_0);
SpiTxRxByte(temp);
value = SpiTxRxByte(0);
CC1100_CSN_1 ;
return value;
}
//*****************************************************************************************
//函數名:void halRfWriteRfSettings(RF_SETTINGS *pRfSettings)
//輸入:無
//輸出:無
//功能描述:配置CC1100的寄存器
//*****************************************************************************************
void halRfWriteRfSettings(void)
{
halSpiWriteReg(CCxxx0_FSCTRL0, rfSettings.FSCTRL2);//自已加的
// Write register settings
halSpiWriteReg(CCxxx0_FSCTRL1, rfSettings.FSCTRL1);
halSpiWriteReg(CCxxx0_FSCTRL0, rfSettings.FSCTRL0);
halSpiWriteReg(CCxxx0_FREQ2, rfSettings.FREQ2);
halSpiWriteReg(CCxxx0_FREQ1, rfSettings.FREQ1);
halSpiWriteReg(CCxxx0_FREQ0, rfSettings.FREQ0);
halSpiWriteReg(CCxxx0_MDMCFG4, rfSettings.MDMCFG4);
halSpiWriteReg(CCxxx0_MDMCFG3, rfSettings.MDMCFG3);
halSpiWriteReg(CCxxx0_MDMCFG2, rfSettings.MDMCFG2);
halSpiWriteReg(CCxxx0_MDMCFG1, rfSettings.MDMCFG1);
halSpiWriteReg(CCxxx0_MDMCFG0, rfSettings.MDMCFG0);
halSpiWriteReg(CCxxx0_CHANNR, rfSettings.CHANNR);
halSpiWriteReg(CCxxx0_DEVIATN, rfSettings.DEVIATN);
halSpiWriteReg(CCxxx0_FREND1, rfSettings.FREND1);
halSpiWriteReg(CCxxx0_FREND0, rfSettings.FREND0);
halSpiWriteReg(CCxxx0_MCSM0 , rfSettings.MCSM0 );
halSpiWriteReg(CCxxx0_FOCCFG, rfSettings.FOCCFG);
halSpiWriteReg(CCxxx0_BSCFG, rfSettings.BSCFG);
halSpiWriteReg(CCxxx0_AGCCTRL2, rfSettings.AGCCTRL2);
halSpiWriteReg(CCxxx0_AGCCTRL1, rfSettings.AGCCTRL1);
halSpiWriteReg(CCxxx0_AGCCTRL0, rfSettings.AGCCTRL0);
halSpiWriteReg(CCxxx0_FSCAL3, rfSettings.FSCAL3);
halSpiWriteReg(CCxxx0_FSCAL2, rfSettings.FSCAL2);
halSpiWriteReg(CCxxx0_FSCAL1, rfSettings.FSCAL1);
halSpiWriteReg(CCxxx0_FSCAL0, rfSettings.FSCAL0);
halSpiWriteReg(CCxxx0_FSTEST, rfSettings.FSTEST);
halSpiWriteReg(CCxxx0_TEST2, rfSettings.TEST2);
halSpiWriteReg(CCxxx0_TEST1, rfSettings.TEST1);
halSpiWriteReg(CCxxx0_TEST0, rfSettings.TEST0);
halSpiWriteReg(CCxxx0_IOCFG2, rfSettings.IOCFG2);
halSpiWriteReg(CCxxx0_IOCFG0, rfSettings.IOCFG0);
halSpiWriteReg(CCxxx0_PKTCTRL1, rfSettings.PKTCTRL1);
halSpiWriteReg(CCxxx0_PKTCTRL0, rfSettings.PKTCTRL0);
halSpiWriteReg(CCxxx0_ADDR, rfSettings.ADDR);
halSpiWriteReg(CCxxx0_PKTLEN, rfSettings.PKTLEN);
}
//*****************************************************************************************
//函數名:void halRfSendPacket(INT8U *txBuffer, INT8U size)
//輸入:發送的緩沖區,發送數據個數
//輸出:無
//功能描述:CC1100發送一組數據
//*****************************************************************************************
void halRfSendPacket(INT8U *txBuffer, INT8U size)
{
halSpiWriteReg(CCxxx0_TXFIFO, size);
halSpiWriteBurstReg(CCxxx0_TXFIFO, txBuffer, size); //寫入要發送的數據
halSpiStrobe(CCxxx0_STX); //進入發送模式發送數據
// Wait for GDO0 to be set -> sync transmitted
while (CC1100_GDO0_1);
// Wait for GDO0 to be cleared -> end of packet
while (CC1100_GDO0_0);
halSpiStrobe(CCxxx0_SFTX);
}
void setRxMode(void)
{
halSpiStrobe(CCxxx0_SRX); //進入接收狀態
}
/*
// Bit masks corresponding to STATE[2:0] in the status byte returned on MISO
#define CCxx00_STATE_BM 0x70
#define CCxx00_FIFO_BYTES_AVAILABLE_BM 0x0F
#define CCxx00_STATE_TX_BM 0x20
#define CCxx00_STATE_TX_UNDERFLOW_BM 0x70
#define CCxx00_STATE_RX_BM 0x10
#define CCxx00_STATE_RX_OVERFLOW_BM 0x60
#define CCxx00_STATE_IDLE_BM 0x00
static INT8U RfGetRxStatus(void)
{
INT8U temp, spiRxStatus1,spiRxStatus2;
INT8U i=4;// 循環測試次數
temp = CCxxx0_SNOP|READ_SINGLE;//讀寄存器命令
CSN = 0;
while (MISO);
SpiTxRxByte(temp);
spiRxStatus1 = SpiTxRxByte(0);
do
{
SpiTxRxByte(temp);
spiRxStatus2 = SpiTxRxByte(0);
if(spiRxStatus1 == spiRxStatus2)
{
if( (spiRxStatus1 & CCxx00_STATE_BM) == CCxx00_STATE_RX_OVERFLOW_BM)
{
halSpiStrobe(CCxxx0_SFRX);
return 0;
}
return 1;
}
spiRxStatus1=spiRxStatus2;
}
while(i--);
CSN = 1;
return 0;
}
*/
INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length)
{
INT8U status[2];
INT8U packetLength;
INT8U i=(*length)*4; // 具體多少要根據datarate和length來決定
halSpiStrobe(CCxxx0_SRX); //進入接收狀態
//delay(5);
//while (!GDO1);
//while (GDO1);
delay(2);
while (CC1100_GDO0_1)
{
delay(2);
--i;
if(i<1)
return 0;
}
if ((halSpiReadStatus(CCxxx0_RXBYTES) & BYTES_IN_RXFIFO)) //如果接的字節數不為0
{
packetLength = halSpiReadReg(CCxxx0_RXFIFO);//讀出第一個字節,此字節為該幀數據長度
if (packetLength <= *length) //如果所要的有效數據長度小于等于接收到的數據包的長度
{
halSpiReadBurstReg(CCxxx0_RXFIFO, rxBuffer, packetLength); //讀出所有接收到的數據
*length = packetLength; //把接收數據長度的修改為當前數據的長度
// Read the 2 appended status bytes (status[0] = RSSI, status[1] = LQI)
halSpiReadBurstReg(CCxxx0_RXFIFO, status, 2); //讀出CRC校驗位
halSpiStrobe(CCxxx0_SFRX); //清洗接收緩沖區
return (status[1] & CRC_OK); //如果校驗成功返回接收成功
}
else
{
*length = packetLength;
halSpiStrobe(CCxxx0_SFRX); //清洗接收緩沖區
return 0;
}
}
else
return 0;
}
//*****************************************************************************************
//函數名:void RESET_CC1100(void)
//輸入:無
//輸出:無
//功能描述:復位CC1100
//*****************************************************************************************
void RESET_CC1100(void)
{
CC1100_CSN_0;
while (CC1100_MISO_1);
SpiTxRxByte(CCxxx0_SRES); //寫入復位命令
while (CC1100_MISO_1);
CC1100_CSN_1;
}
/*****************************************************************************************
//函數名:CpuInit()
//輸入:無
//輸出:無
//功能描述:SPI初始化程序
/*****************************************************************************************/
void CpuInit(void)
{
SpiInit();
delay(5000);
}
//*************************************************************************
// MSP430串口初始化
//*************************************************************************
void UART_Init()
{
U0CTL|=SWRST; //復位SWRST
U0CTL|=CHAR; //8位數據模式
U0TCTL|=SSEL1; //SMCLK為串口時鐘
U0BR1=baud_h; //BRCLK=8MHZ,Baud=BRCLK/N
U0BR0=baud_l; //N=UBR+(UxMCTL)/8
U0MCTL=0x00; //微調寄存器為0,波特率9600bps
ME1|=UTXE0; //UART0發送使能
ME1|=URXE0; //UART0接收使能
U0CTL&=~SWRST;
IE1|=URXIE0; //接收中斷使能位
P3SEL|= BIT4; //設置IO口為普通I/O模式
P3DIR|= BIT4; //設置IO口方向為輸出
P3SEL|= BIT5;
}
//*************************************************************************
// 串口0發送數據函數
//*************************************************************************
void Send_Byte(uchar data)
{
while((IFG1&UTXIFG0)==0); //發送寄存器空的時候發送數據
U0TXBUF=data;
}
//*************************************************************************
// 處理來自串口 0 的接收中斷
//*************************************************************************
#pragma vector=UART0RX_VECTOR
__interrupt void UART0_RX_ISR(void)
{
uchar data=0;
data=U0RXBUF; //接收到的數據存起來
Send_Byte(data); //將接收到的數據再發送出去
}
//*************************************************************************
// 處理來自串口 0 的發送中斷,預留
//*************************************************************************
#pragma vector=UART0TX_VECTOR
__interrupt void UART0_TX_ISR(void)
{
}
//*************************************************************************
// 主函數
//*************************************************************************
void main(void)
{
INT8U n;
INT8U TxBuf[8]={0}; // 8字節, 如果需要更長的數據包,請正確設置
WDT_Init(); //看門狗設置
Clock_Init(); //系統時鐘設置
UART_Init(); //串口設置初始化
_EINT(); //開中斷
CpuInit();
POWER_UP_RESET_CC1100();
halRfWriteRfSettings();
halSpiWriteBurstReg(CCxxx0_PATABLE, PaTabel, 8);
//TxBuf[0] = 8 ;
TxBuf[1] = 1 ;
TxBuf[2] = 1 ;
// halRfSendPacket(TxBuf,8); // Transmit Tx buffer data
delay(6000);
while(1) //無限循環
{
TxBuf[1] = 1 ;
for(n=16; n>=1; n--)
{
halRfSendPacket(TxBuf,8); // Transmit Tx buffer data 發送16個數據包,總計耗時120ms
delay(1); // delay(200)=10ms
}
TxBuf[1] = 0xff;
TxBuf[2] = 0xff;
delay(6000);
}
}
復制代碼
歡迎光臨 (http://m.raoushi.com/bbs/)
Powered by Discuz! X3.1